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Preface

The ICAPS poster session provides an opportunity to discuss innovative work in
progress and late-breaking results. Twenty-two submissions were received, covering
a wide range of topics including scheduling, probabilistic planning, BDI systems and
autonomic computing. Out of these, ten posters have been selected. I am most grateful
to the authors and the reviewers who contributed to this high-quality and very interesting
session.
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of goals. Consequently we have modified JSHOP to pro-
vide information on the reduction process itself; i.e. for each
operator/action in the plan, which recipe and goal instance
were selected to lead to that action4.

6 Executing the JSHOP Plan
The partial-order plan returned from the planner consists of
a partial order of nodes. Each node contains the top level
goal, and all information necessary for binding variables and
making choices of recipes as that goal is executed.

The recipe provided by our system posts the top level
goals in the appropriate order. It initially posts asyn-
chronously, all goals at the start of the plan which can be
run in parallel. As each top level goal completes, any imme-
diate successor, for which all predecesors have completed, is
posted. In our example, the goal instances SeviceEmergency
E1 and ServiceEmergency E3 are posted initially. When
ServiceEmergency E1 completes, ServiceEmergency E2 is
posted, as it is dependent only on ServiceEmergency E1 in
the partial order. If the ordering was such that ServiceEmer-
gency E2 was after both ServiceEmergency E1 and Ser-
viceEmergency E3, then it would not be posted until both
completed.

When each goal is posted (both the top level goal and the
subsequent subgoals), the BDI system must decide the ap-
propriate recipe to use. This is based on the plan that has
been returned by the planner. We require firstly that the
recipe instance chosen is of the same type as that indicated
by the plan. Secondly it must contain the same bindings in
the context condition as that indicated in the plan.

Recipe selection is handled transparently to the program-
mer, by extra code added to each recipe’s context() condi-
tion at the compilation stage. The code ensures that, when
appropriate, the BDI program selects recipes based on plans
returned by JSHOP, and at other times selects recipes using
normal BDI recipe selection.

If at any point in the execution it is not possible to match
a recipe from what JACK considers is available with what
the planner considers should be executed, then this indicates
that there is a problem, probably resulting from some envi-
ronmental change. If at this stage execution continues, using
the recipe chosen by the planner, this is likely to cause prob-
lems. JACK context conditions are written to ensure that
appropriate plans for the situation are the ones that are con-
sidered. If a recipe is used which is intended for a different
situation than the one existing, then it cannot be expected to
succeed. If on the other hand we allow JACK to choose a
recipe outside the plan which has been produced, we invali-
date the plan.

In such cases, a recipe will not be selected, causing the
goal it handles to fail, therefore causing the top level goal
called within InvokePlanner (used as a generic term here to
represent any plan that invokes JSHOP) to fail. When In-
vokePlanner realises the goal state has not been achieved,
instead of calling the planner to replan, the InvokePlanner
recipe will also fail. At this point the BDI system’s failure
handling will take over.

4Refer to http://www.cs.rmit.edu.au/l̃desilva/research/publications
for more information.

7 Conclusions
BDI systems are robust in dealing with complex and dy-
namic environments, and work with a recipe library pro-
vided by the programmer. In some situations it can be de-
sirable to do some planning, either as a result of other ap-
proaches failing, or in order to look ahead to guide choices
at a particular point. The planner would ideally be able to
use information about the existing BDI program to simu-
late the behaviour of the system, and provide advice on the
choices the system should take during execution. We have
implemented a system that does this, by using an efficient
HTN planner. Our focus is different to past work in inter-
leaving planning and execution, in that we cater for the in-
trinsic needs of the BDI architecture. In particular, we leave
the choice of when planning should be done, and with what
information, to the BDI programmer. Executing the plan
is done using regular BDI execution, using the advice from
the planner on what recipes to choose, and what bindings to
use in context conditions. Furthermore, our plan execution
model is unique, in that it is possible for the BDI system
to maintain control on plan failure, and resume normal BDI
execution.

We are currently working on creating formalisms to define
and evaluate our framework.
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Abstract

Computing systems have become so complex that the IT
industry recognizes the necessity of deliberative methods
to make these systems self-configuring, self-healing, self-
optimizing and self-protecting. Architectures for systemself-
management, also called Autonomic Computing (AC), have
been proposed where elements are managed by monitoring
and analyzing behaviors and using the response to plan and
execute new actions that take or keep the system in desir-
able states. In this paper, we highlight some of the challenges
and research problems raised in adapting automated planning
techniques to AC applications.

Introduction
The vision of Autonomic Computing (AC)(Kephart & Chess
2003) is to improve manageability of complex IT systems by
making them self-configuring, self-healing, self-optimizing
and self-protecting. This would require that the behavior of
system elements are monitored and analyzed, and the per-
formance is used to plan and execute suitable actions to take
or keep the system in desirable states.

Policy is a popular term in industry to refer to any declara-
tive specification of behavior that is desired from a software
system (e.g., agent) and the behavior is enforced by a pol-
icy engine. Two types of policies are easily distinguishable.
In the first case, the policy describes desired behavior and
exhaustively lists necessary actions to meet them under all
conditions. During runtime, a policy engine will verify the
conditions and take the stipulated action. This type of pol-
icy is procedural in nature because the actions to take under
a condition is fully known, and it is suited for reactive rea-
soning. In the second case, the policy only lists the system’s
expected behavior (e.g., goal state) and it is left to the pol-
icy engine to deliberate and determine what actions need to
be taken to ensure the satisfaction of goals. A generalization
of goal type policy can include utility information so that the
selection of actions depends on runtime situations.Planning
provides the policy engines for goal-type policies.Planning
is thus critical for meeting the AC vision.

Planning is a very wide discipline characterized by how
the environment, the agent’s goal and its model of the world

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

are represented. Planning algorithms are best understood as
a refinement search over sets of possible plans - an algorithm
starts from the set of all possible plans and performs refine-
ments on the plan set leading to sub-sets from which ex-
tracting a single solution is feasible(Kambhampati & Srivas-
tava 1995; Kambhampati et al 1995). Various types of plan-
ners can return sequential(Weld 1999), conditional plans or
a generalized state-action mapping (Blythe 1999) specify-
ing what action to take in any state during execution(hence
procedural policies), that are optimized with respect to a de-
fined metric. In terms of performance, planning has seen an
upsurge in the last 6-7 years with new planners that are or-
ders of magnitude faster than before and are able to scale this
performance to complex domains, e.g., metric and temporal
constraints.

Despite the obvious potential for connections between au-
tomated planning and autonomic computing, very little has
been done to exploit the synergy. In this paper, we high-
light some of the challenges and research problems raised in
adapting automated planning techniques to AC application
scenarios so that researchers in the planning community be-
come aware of the potential applications in autonomic com-
puting. Here is the outline of the paper: we start with a brief
overview of planning followed by description of AC scenar-
ios and how planning can be useful there. We then iden-
tify AC-specific planning challenges. They include working
with incomplete domain models and in managing life cycles
of plans. We conclude by relating planning to procedural
policies and its connections to Web and Grid services and
finally give closing comments.

Preliminaries
We review planning and their role in AC scenarios in this
section.

Planning
For the purposes of this paper, we introduce a planning prob-
lemPP as a 4-tuple〈P, I, G, A〉 whereP is the set of predi-
cates,I (⊆ P ) is the complete description of the initial state,
G (⊆ P ) is the partial description of the goal state, andA is
the set of executable (primitive) actions. A specification of
an action consists of preconditions (A

pre
i ⊆ P ) and postcon-

ditions (Apost
i ⊆ P ). A plan forPP is an action sequence
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S, such that ifS is executed inI, the resulting state of the
world would containG. A planner finds a plan by efficiently
searching in the space of possible states configurations or ac-
tion orderings (plans). It is desirable that a planner besound
andcomplete. A planner is sound if it will only generate
correct plans. A planner is complete if it will always find a
plan, provided one exists, given a domain and problem de-
scription. Automated planners are designed to be sound and
complete.

A plan can be obtained without a planning algorithm and
without explicit action specifications. An example of the for-
mer is when the user provides the plan directly and an exam-
ple of the latter is when a plan is generated by some domain-
dependent reasoning on initial and goal states. However, the
soundness and the completeness of plan generator cannot
be guaranteed. Domain-dependent planners usually produce
superior plans than domain-independent methods, but they
are harder to build and cannot be reused.

The user or system need not act on a plan immediately.
A plan may be one of the many plans that are produced by
users or planning algorithms before some plan is executed.
They could be stored, searched, inspected, evaluated, modi-
fied, and critiqued by human experts or automated reasoning
systems, and executed. Eventually, plans will outlast their
utility and be replaced.

Planning needs of Autonomic Computing Scenarios
In the AC vision(Kephart & Chess 2003), four aspects of
self-management have been identified. We discuss the role
of planning in these aspects.

Self-configuration: deals with installation, configuration
and integration of IT systems. The installation procedures
work by gathering information about the host environment,
figuring out the dependencies among needed tasks and also
optimizing performance measures, and finally executing the
tasks to realize the changes. Information about host system
is increasingly getting standardized along structured formats
but the executable tasks can be ad-hoc scripts. Humans want
to be closely involved in key decisions during execution.

Self-healing: deals with determination of problematic sit-
uations and recovering from them. It requires the system to
reason with how activities can be performed, how diagnos-
tic information is produced and how new changes can be
affected with minimal cost and maximum benefit. The spec-
ification of actions could be known at some level of granu-
larity.

Self-optimizing: deals with improving the performance
of running systems by leveraging alternative opportunities.
The system would monitor its performance and based on its
changing environment, could initiate new changes (e.g., re-
source re-provisioning).

Self-protecting: deals with monitoring the environment
for threats and responding to them. It is related to self-
optimizing aspect but with the difference that the situation
needs time-bound response and lead to cascading effect. Hu-
mans want to be closely involved based on the seriousness
of the situation.

Table 1 summarizes the level to which information about
the initial state (I), goals (G), action specification (A), ex-

Type I G A S Constraints
Self-configuring Yes Yes - - Yes
Self-healing Yes Yes Yes - Yes
Self-optimizing - - - Yes Yes
Self-protecting - Yes - Yes Yes

Table 1: The level to which planning problem information
is expected to be available in AC scenarios. (-) means not
assured.

isting plans (S) and domain constraints (Constraints) is ex-
pected to be available in the different AC scenarios. In self-
configuring situation, actions may be scripts whose pre- and
post-condition information may not be known and there may
be no plans availablea priori. In self-healing scenario,A is
expected so that alternative plans could be explored. In self-
optimizing and self-protecting scenarios, a plan would be
available for the running system but the goal specification
will be more clearly defined for the latter.

From the above discussion, planning needs for AC can be
summarized as follows:

1. The plan representation can be as general as workflows,
e.g. BPEL4WS(Curbera et al 2002), with sequence, con-
ditional, parallel, non-deterministic and loop constructs.

2. The plans are needed even if the initial state, goal state
and action specification are not available, individually or
collectively.

3. Automated plan generation is important but plans could
also be obtained by users or domain-dependent methods.
Even automatically generated plan may be analyzed by
users before execution.

4. Over time, there would be a repository of previously gen-
erated and executed plans. They have to be considered
while selecting existing or generating new plans.

5. The plans would typically be centrally executed but in
large applications, the execution can be distributed.

CHAMPS(Keller et al 2004) is an example of a
domain-dependent planner for AC self-configuration sce-
nario while ABLE(Bigus et al 2002), extended with domain-
independent Planner4J planners(Srivastava et al 2004), has
been employed in self-healing scenarios. They are initial at-
tempts to validate the potential of planning in AC.

AC Specific Challenges in using Planning
Based on our survey and experience of applying planning to
autonomic computing, we identify two important challenges
that AC applications pose to automated planning research –
the need to support planning in partially specified domains,
and the need to support plan life-cycle management. In this
section, we describe these briefly.

Handling Incomplete Domain Model
The fact that a domain model is incomplete means many
things. It could mean that domain is incompletely known
though whatever is known is correct. This is orthogo-
nal/different from expressiveness of domain model, e.g.,
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PDDL levels(Fox & Long 2002), where the domain model
at each level is complete though it may abstract some de-
tails of the world, which may get revealed in a more detailed
higher PDDL level. Expressiveness impacts the complexity
of planning and the representation of output plan. Incom-
plete domain model is also orthogonal/different from plan-
ning formulations varying in complexity like classical, con-
ditional with partial observability, etc., where a problemis
intrinsically of one type and hence cannot be expressed in
any more simpler form.

If a plan is generated with incomplete domain models,
it leads missing or under specified causal dependencies be-
tween actions in the plan. This affects the soundness guar-
antee of the planner because a generated plan may turn out
to be not executable.

A domain may be incompletely specified in many ways.
Formally, a planning domain is incomplete if at least one
of the following happens (* denotes the corresponding com-
plete specification):

• P ⊂ P ∗

• A
pre
i ⊂ A

pre∗
i for someAi

• A
post
i ⊂ A

post∗
i for someAi

• There are relationsαi : {Pi} × P which are not reflected
in causal dependencies for achievement of predicates in
A

• There are relationsβi : {Ai} × A which are not reflected
in causal dependencies among actions inA

In the first case, the list of predicates in the domain is in-
complete. In the second case, the list of preconditions for an
action is incomplete. The preconditions can also be disjunc-
tive but in contrast to traditional planning where disjunction
is due to inherent uncertainty that will disappear at runtime,
disjunction due to incomplete model will only get resolved
with more domain input. In the third case, the list of post-
conditions of an action is incomplete and it can only get re-
solved with more domain input.

In many real domains like AC, the dependency among
tasks or predicates is given but it is not explained in terms
of a causal explanation (i.e., what precondition/effect depen-
dencies are violated if the dependency is violated). For ex-
ample, it is known that a specific action must occur before
another action but this information is known as an ordering
relation (Ai ≺ Aj) but the actions do not have a causal de-
pendency in terms of the modeled pre- and post conditions
(Singh et al 1995). The fourth and fifth cases represent spec-
ification of dependencies among predicates and actions, re-
spectively, that do not have causal explanation. Axioms can
be used to specify these types of incompleteness.

The challenge for planning community is how to effec-
tively deal with such incompleteness. There has been some
initial work, e.g., in(Garland & Lesh 2002), the authors
look at the problem of evaluating plans when the under-
lying actions are incompletely modeled. They define four
types of risk based on the structure of the plan provided
that any action’s specification can be corrected in future.
Plans are compared based on their assessed risks, and a
ranking is derived. To plan with relations that do not have

causal dependencies, techniques from the intersection of
planning and distributed scheduling (c.f. (Beck & Fox 1999;
Singh et al 1995)) will need to be adopted and extended.

Managing Life Cycle of Plans
A plan is synthesized for meeting some goals. But synthe-
sis is just the beginning of a complex life-cycle manage-
ment process. Plans must be organized in large collections,
where they can be grouped along different purposes and are
amenable to search, inspection, evaluation, and modification
by human experts or automated reasoning systems. With
users in the loop, plans which have been used in the past and
have been successful, are more likely to be used again. New
plans would get requested only when there is a deficiency in
the existing plans. Eventually, plans will outlast their utility
and be replaced.

Planning community has focused primarily on synthesis.
To support AC applications, one needs to manage the life cy-
cle of plans within an application and based on the context
of their usage. For example, one needs techniques to auto-
matically generate metadata annotations of plans that could
be used for storage and retrieval. If humans provide meta-
data, each annotation could be different and metadata mis-
matches will become a critical issue unless the user is very
constrained.

The challenges in generating metadata for managing plans
are many. The plan can be as expressive as general work-
flows with both automated and manual sub-plans. The spec-
ification of the pre- and postconditions of each action may
not be available. Furthermore, the initial situation for which
the plan was generated and the goal it is supposed to achieve
are seldomly available. This lack of information, which
is taken for granted in AI planning, necessitates new tech-
niques to deduce a plan’s usage context. An initial approach
for plan life cycle is discussed in (Srivastava et al 2005)
where plan analysis techniques take BPEL4WS workflows
or PDDL plans as input, build action models using plan
structure and generate metadata based on the given plan and
as well as compared to other plans in a plan repository.

Relationship with other technologies
We now discuss relationship of planning with procedural
policies, and Web services and Grid.

Relationship between procedural policies and plans
As mentioned in the introduction, the term policy is used
to refer to any declarative specification of behavior that is
desired from a software system but they usually refer to pro-
cedural policies. There are many choices for a procedural
policy language for AC, e.g., WS-Policy1 being defined for
web services and REI2. Most languages support variations
of the Event-Condition-Action (ECA) specification. ECA
rules specify what actions to take in response to events pro-
vided stated conditions hold, i.e., (Bailey et al 2002):

1ftp://www6.software.ibm.com/software/developer/library/ws-
policy.pdf

2http://ebiquity.umbc.edu/v2.1/get/a/publication/57.pdf
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On : ≺ Event�
If : ≺ Condition� holds
Do : ≺ Actions�

Action refers to any activity that can be performed in the
domain and a policy may consist of one or more actions.
The policy language may additionally allow specification of
scoping and priority (business value) of rules that can be
used for rule selection while working with a set of rules.

Planning can be used for managing procedural policies -
while creating new policies, validating properties with ex-
isting policies, updating policies - based on whether a set
of policies could be composed. In (Srivastava 2004), it was
shown how decision support problems in managing software
components over their life cycle could be answered by pos-
ing them as planning problems. The same could be done for
procedural policies.

Reciprocally, procedural policies can be used while plan-
ning for the AC scenarios. Essentially, they allow users to
decide what decision to make in a situation, and this infor-
mation can be used to pick any information needed for plan-
ning. More specifically, procedural policies can be used to:

• Select information for goals (G)

• Select information for initial state (I)

• Select actions relevant for planning (A) and what gets
modeled in their specification.

• Select predicates in the planning problem (P ).

Relating AC with Web Services and Scientific
Flows
Planning is actively being applied for composition of web
services(Srivastava & Koehler 2003) and scientific work-
flows (grid)(Blythe et al 2003). There are interesting sim-
ilarities and contrasts between the planning requirementsof
autonomic computing and those of web services and scien-
tific workflows. All of them require an expressive plan rep-
resentation like BPEL4WS. All of these applications also
pose the challenge of incomplete domain theories. In the
case of web services, the incompleteness may come because
of faulty or incomplete service annotations, while for work-
flows, the incompleteness may come because of constraints
and dependencies without causal explanations. Plan man-
agement is also critical for these applications, while the need
for automated synthesis is less prominent. In grid and web
services, the plans will be distributedly executed while they
will be primarily centrally executed in AC. Hence, tech-
niques from distributed planning for generating concurrent
plans are more relevant to the former.

Conclusion
In this paper, we explored the planning needs of AC, its
match with existing planning technology, and its connec-
tions with policies and planning for web services and sci-
entific workflows (grids). We observe that AC requirements
call for plan synthesis and management techniques that work
with incomplete domain specifications (theories) and sup-
port a life cycle view of plans.
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